
1086 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Parallel Embedded Block Coding
Architecture for JPEG 2000

Hung-Chi Fang, Yu-Wei Chang, Tu-Chih Wang, Chung-Jr Lian, and Liang-Gee Chen, Fellow, IEEE

Abstract—This paper presents a parallel architecture for the
Embedded Block Coding (EBC) in JPEG 2000. The architecture is
based on the proposed word-level EBC algorithm. By processing
all the bit planes in parallel, the state variable memories for the
context formation (CF) can be completely eliminated. The length
of the FIFO (first-in first-out) between the CF and the arithmetic
encoder (AE) is optimized by a reconfigurable FIFO architecture.
To reduce the hardware cost of the parallel architecture, we pro-
posed a folded AE architecture. The parallel EBC architecture can
losslessly process 54 MSamples/s at 81 MHz, which can support
HDTV 720p resolution at 30 frames/s.

Index Terms—Discrete wavelet transform (DWT), embedded
block coding (EBC), EBC with optimized truncation (EBCOT),
image processing, JPEG 2000, parallel processing.

I. INTRODUCTION

J PEG 2000 [1]–[4], which is a new still image coding stan-
dard, is well-known for its excellent coding performance

and numerous features [5], such as region of interest, scalability,
error resilience, etc. All these powerful tools can be provided by
a unified algorithm in a single JPEG 2000 codestream. For ex-
ample, an image can be losslessly coded for storage and then re-
trieved at different bit-rates by transcoding. Transcoding of the
JPEG 2000 codestream can be done by parsing, reordering, and
truncating the original codestream. However, the high compu-
tational complexity that gives such excellent performance and
rich features correspondingly restricts real-time applications of
JPEG 2000. To resolve that restriction, we propose a high per-
formance, parallel architecture for the embedded block coding
(EBC) in JPEG 2000.

EBC [6] is the most complicated portion of JPEG 2000 [7],
and there are various EBC architectures proposed in previous
arts [7]–[10]. All of them process the code-block bit plane
by bit plane, which is the default mode of JPEG 2000 block
coding. Although the compression ratio of the default mode is
the highest among all coding modes, it has some drawbacks.

Manuscript received July 18, 2003; revised March 5, 2004. This work was
supported in part by the Ministry of Education (MOE) Program for Promoting
Academic Excellence of Universities under Grant 89E-FA06-2-4-8, in part by
National Science Council, R.O.C., under Grant 91-2215-E-002-015, and in part
by the MediaTek Fellowship. This paper was recommended by Associate Editor
A. Kot.

H.-C. Fang, Y.-W. Chang, C.-J. Lian, and L.-G. Chen are with DSP/IC Design
Laboratory, Graduate Institute of Electronics Engineering and the Department
of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan,
R.O.C. (e-mail: honchi@video.ee.ntu.edu.tw; wayne@video.ee.ntu.edu.tw;
cjlian@video.ee.ntu.edu.tw; lgchen@video.ee.ntu.edu.tw).

T.-C. Wang was with Department of Electrical Engineering, National
Taiwan University, Taipei 10617, Taiwan. He is now with the Chin Fong
Machine Industrial Company, Ltd., Chang Hua 500, Taiwan, R.O.C. (e-mail:
eric@video.ee.ntu.edu.tw).

Digital Object Identifier 10.1109/TCSVT.2005.852618

First, the default mode performs poorly at error resilience
[11] since the arithmetic encoder (AE) terminates only at the
end of a code-block. When an error occurs somewhere in a
code-block, all the remaining data in the code-block becomes
useless. Second, the hardware implementation of the default
mode requires a lot of memory to store the state variables. The
memory requirement analysis in [12] showed that it requires 20
kbits of internal memory for a 64 64 code-block.

Memory issue is the most important problem of conventional
EBC architectures. The discrete wavelet transform (DWT),
adopted by JPEG 2000, is a word-level processing algorithm.
However, the EBC is a bit-level processing algorithm. There
must be parallel-to-serial conversion between these two func-
tional blocks. In the conventional implementations of the
EBC [7]–[10], the code-block is coded bit plane by bit plane.
Therefore, all the DWT coefficients must be read times
from external tile memory, where denotes the number of
nonzero bit planes of the code-block. The power consumption
associated with this will be large [13]. Although the power
consumption can be reduced by placing a code-block memory
on chip, the memory requirement will increase by 44 kbits,
which dramatically increases the area cost.

To solve these problems, we proposed a word-level EBC al-
gorithm [14], which can accomplish the EBC without state vari-
ables. Based on this algorithm, the state variable memory is
eliminated in the proposed architecture. Moreover, tile memory
access can be reduced to one read operation for each coefficient
and, therefore, the power consumption of the memory access
can be reduced. On the other hand, the parallel mode performs
well at error resilience because the AE terminates at each coding
pass. The errors are confined to a single coding pass. Issues of
first-in first-out (FIFO) length between the context formation
(CF) and the AE in the EBC are also addressed. In addition, the
optimal length of the FIFO for general EBC implementations is
determined in this paper, and a cost-effective architecture of the
FIFO for the parallel EBC architecture is proposed.

This paper is organized as follows. Section II reviews the de-
fault mode EBC algorithm and previous EBC architectures. Sec-
tion III describes the proposed word-level EBC algorithm. The
parallel EBC architecture based on the word-level algorithm is
presented at Section IV. Implementation results and comparisons
are shown in Section V. Finally, Section VI concludes this paper.

II. PRELIMINARY

A. EBC Algorithm

EBC with optimized truncation (EBCOT) is adopted as the
entropy coding algorithm of JPEG 2000. EBCOT is a two-tiered

1051-8215/$20.00 © 2005 IEEE

FANG et al.: PARALLEL EMBEDDED BLOCK CODING ARCHITECTURE FOR JPEG 2000 1087

Fig. 1. Diagram of the EBCOT algorithm. It is a two-tiered algorithm, in which tier-1 is also called the EBC.

Fig. 2. Diagram of code-block and stripes. A 64� 64 code-block is divided into sixteen 4� 64 stripes. The numbers represent the scan order.

algorithm, as shown in Fig. 1. The tier-1 part is the EBC, which
is composed of the CF and the AE. The bit stream formed by
the EBC is called the embedded bit stream and is passed to the
tier-2 for rate control. Given a target length, tier-2 truncates the
embedded bit streams to minimize the overall distortion. The
EBC algorithm is elaborated as follows.

1) CF: The basic coding unit of the EBC is a code-block
with typical size of 64 64 or 32 32. An code-block
is further divided into stripes, with size of . The scan order
is first column by column within a stripe and then row by row
for stripes, as shown in Fig. 2.

The order of bit plane coding is from the most significant bit
(MSB) bit plane of the code-block to the least significant bit
(LSB) bit plane. Each bit plane requires three coding passes:
the significant propagation pass (Pass 1), the magnitude refine-
ment pass (Pass 2), and the cleanup pass (Pass 3). The MSB bit
plane, which is an exception, requires only the Pass 3. A con-
text window, as shown in Fig. 3, is involved while modeling
the context of a sample coefficient. The sample coefficient to be
coded lies in the center of the context window and is denoted
as . The eight-connected neighbors of are further divided
into horizontal (H), vertical (V), and diagonal (D) groups ac-
cording to their relative position to . For the CF, a binary state
variable called significant state is defined for a coefficient to in-
dicate whether or not a nonzero magnitude bit has been coded
in previous bit planes or passes. Then, the coding pass of is
determined by the significant states of itself and its neighbors.
If has been significant, it belongs to the Pass 2. If has not
been significant but at least one of its neighbors has been signifi-
cant, it belongs to the Pass 1; otherwise, it belongs to the Pass 3.

One binary-valued symbol is encoded by the AE. Nineteen
contexts are used to adapt the probability models of the AE.
The contexts are mapped by the significant states of the neigh-
bors. Note that the newest values of the state variables must be

Fig. 3. Context window for CF. The sample coefficient to be coded is referred
as C . The eight neighbors of C are grouped as H;V; and D.

used and the causality must be satisfied in the scan order de-
scribed above. Detailed information on the context mapping can
be found in [15].

2) Arithmetic Encoder: The AE is an adaptive, multiplica-
tion free, binary MQ coder. It is derived from the Q coder [16]
and enhanced by a conditional exchange procedure derived from
the MELCODE [17] and the state-transition table known as
JPEG-FA [18]. The probability tables are predetermined and
provided by the standard. Detailed operations of the AE can be
found in [12].

B. Previous EBC Architectures

Lian et al. [7] proposed an EBC architecture, which real-
ized the baseline function, i.e., bit plane by bit plane coding.
Three scans are needed to code one bit plane, except for the
MSB bit plane, which needs only one scan. Thus, it takes

clock cycles for the block coder to code a
code-block with size of and nonzero bit planes. Three
speed-up techniques were proposed to reduce the processing

1088 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 4. Comparisons of rate-distortion curves of various images of parallel mode and default mode. All the images are of size 512� 512 coded by 5/3 filter with
two levels of decompositions, 128� 128 tile and 64� 64 code block.

time. With these techniques, the number of processing cycles
are reduced to 38% on average with the cost of 256 bits memory.
The memory requirement of that architecture [7] was reported
as 13 kbits. However, it assumes that the sign and magnitude
are stored on the external memory. In order to make fair com-
parisons, this memory should be added and, therefore, a total of
21 kbits memory are needed in the architecture.

Hsiao et al. [8] reduced the memory requirement of the state
variables in the EBC by exploring the dependency among these
state variables. The method reducing the memory requirement
by 20% at the cost of a few logic gates. An architecture for
the AE was also proposed in [8], using three pipeline stages
in normal operation and four pipeline stages when the byteout
is triggered. However, when the AE is in the byteout stage, it
cannot process the ConteXt Decision (CXD) pair from the block
coder. At this cycle, the block coder must be stalled.

Chiang et al. [9] proposed a pass-parallel EBC architecture.
All the three passes in a bit plane are coded within one scan
so that the processing cycles are reduced. The memory require-
ments of state variables are reduced by 4 kbits in the parallel
mode. In this architecture, three bit streams should be gener-
ated concurrently since the three passes are processed in par-
allel. Note that only one sample coefficient is scanned in a cycle
and it belongs to one of the three coding passes. Therefore, the
authors proposed a pass switching AE, which is composed of
one processing element (PE) and three suits of coding status
registers.

All the above architectures require at least 16 kbits of memory
for the state variables, and the processing time of these archi-
tectures depends on the number of nonzero bit planes. For a
code-block with nonzero bit planes, at least cycles are re-
quired to process a coefficient. Therefore, the throughput of
these architectures are only of the operating frequency.

Andra et al. [10] proposed a code-block parallel architec-
ture to increase the throughput by encoding three code-blocks
in parallel by three independent EBC modules. Therefore, the

throughput is increased by three times at almost three times the
hardware cost.

All the above architectures are derived from the default mode
EBC algorithm, which is a sequential algorithm. Therefore,
these architectures have inherent limitations on performance.
To overcome this obstacle, we propose a word-level EBC
algorithm, which enables all the bit planes to be processed in
parallel. This algorithm opens a new direction for the hardware
architecture of the EBC to advance.

III. PARALLEL EBC ALGORITHM

In this section, we propose a word-level EBC algorithm based
on the parallel mode defined in the standard. By use of the
algorithm, the CF can be accomplished without state variable
memory. Moreover, all the bit planes can be processed in par-
allel, which dramatically increases the throughput. In parallel
mode, the arithmetic encoder is always terminated at end of each
coding pass and the samples that come from the next stripe are
considered insignificant. As a result of the two restrictions, the
performance of parallel mode is slightly worse than that of the
default mode. Fig. 4 shows the performance comparison of var-
ious images. The average peak signal-to-noise ratio (PSNR) loss
is about 0.25 dB in medium to high bit-rate and 0.1 dB in low
bit-rate. The word-level EBC algorithm is elaborated in subse-
quent sections.

A. Coding Pass Classification

In this section, the parallel coding pass classification al-
gorithm is presented, in which the coding passes of samples
from each bit plane are determined independently. Thus,
parallel process of all the bit planes becomes possible. Let

denotes the value of the central coefficient in the
context window and denotes the value of , as shown
in Fig. 3. In addition, , , , , , , and
denote the values of the corresponding coefficients. Note that

FANG et al.: PARALLEL EMBEDDED BLOCK CODING ARCHITECTURE FOR JPEG 2000 1089

when is located on the last row of the stripe, , , and
are set to zero because the causal mode is turned on. In

the following, is used to represent any neighbor of , i.e.,
.

Let denote the coding pass of the th bit plane of . In
the following discussions, a superscript indicates the bit plane
number, where zero means the LSB, and a suffix indicates the
location in context window. The coding pass, , is determined
by the contributions of its neighbors at bit plane and the rel-
ative position of the its MSB bit plane and . The contribution
of to the th bit plane is represented by . For whose scan
order is after , its contribution is determined on the related po-
sition of and its MSB location

(1)
where

.
(2)

On the other hand, the contribution of that is scanned before
is

otherwise .
(3)

Note that is available because is scanned before .
According to the scan order defined in the standard, , ,
and are always scanned before , while , and are

always scanned after . For , the relative scan order depends
on the position of . When is the first coefficient in a column
of the stripe, is scanned before because is scanned in
previous stripe. In other cases, is scanned after .

The coding pass of the th bit plane of the central coefficient
is

otherwise
(4)

where the result of has a range of 0–8.

B. CF

The context mapping in the parallel mode is exactly the same
as that in the default mode, but the approach to get the con-
tributions of H, V, and D groups for context mapping is quite
different. These contributions are abbreviated as . For the
CF, we define two new variables and as

(5)
and

.
(6)

The indicates whether the th bit plane is lower than the MSB
bit plane of . The indicates whether the th bit plane is the
MSB bit plane of . In the following sections, we elaborate the
algorithms to obtain the contributions in magnitude coding and
sign coding separately.

TABLE I
TRUTH TABLE OF H (V) FOR SIGN CODING WHERE X MEANS “DO

NOT CARE ”

1) Magnitude Coding: Let denotes the contribution of
the th bit plane of with respect to . The group contribution
data for the context modeling can be obtained by

(7)

(8)

(9)

For scanned after , the contribution is given by

otherwise .
(10)

Otherwise, the contribution of is give by

otherwise .
(11)

2) Sign Coding: Let denotes the sign of , where “1”
stands for a negative coefficient. For the sign coding, two vari-
ables are defined as

(12)

and

(13)

where and are defined in (5) and (6), respectively. Note
that the value of or is either zero or one because there is
at most one nonzero , which is one. The indicates whether
the MSB of locates at higher bit plane than that of . The
indicates whether the MSBs of and locate in the same bit
plane. The contribution of after for sign coding is

otherwise.
(14)

Otherwise, the contribution of is

otherwise.
(15)

1090 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 5. Block diagram of the proposed architecture. Only the MPC module involves word-level computations, and all other modules process independently over
bit planes.

The truth table of the group contribution data for sign coding,
or , is shown in Table I.

C. Arithmetic Encoder

In the parallel mode, the probability tables are reset on each
coding pass, and the embedded bit stream of each pass is ter-
minated by flushing to separate from next pass. Termination on
each pass can prevent error from propagating across passes. Ex-
cept for resets and terminations, the operations of the arithmetic
encoder are exactly the same in the default mode and the par-
allel mode.

IV. PARALLEL EBC ARCHITECTURE

In this section, a parallel EBC architecture is proposed based
on the word-level algorithm. The proposed parallel EBC archi-
tecture is shown in Fig. 5. There are five major functional blocks
in this architecture, all of which process independently over
bit planes, except the MSB pass classification (MPC) module.
The DWT coefficients are fed into Gobang register bank (GRB)
module, in which the coefficients are shifted and rotated to make
the dataflow fit with the scan order defined in the standard. The
MPC module generates the coding pass of the MSB of each
coefficient for the PC (Pass Classification) module. Then, the
coding pass and data of all bit planes are determined
in the PC module. The CF module maps the pass and
data into CXD pairs and puts them into the reconfigurable FIFO
(RFIFO) module. The RFIFO module contains ten FIFOs, in
which two FIFOs contain 15 registers (L0–L2) and eight FIFOs
contain four registers (S0–S7). Each AE in the folded AE (FAE)
module handles two FIFO inputs, i.e., two bit planes, and gen-
erates embedded bit streams.

The number of AE is folded by two due to the properties
of DWT coefficients in the EBC algorithm. The magnitudes
of DWT coefficients are not equally distributed and large co-
efficients are much less than small ones. Thus, the number of
contexts in a bit plane decreases dramatically from the LSB bit
plane to the MSB bit plane. By these observations, we use one
AE to deal with two bit planes. Bit plane and share
one AE to form the bit streams, where represents the number

Fig. 6. GRB. The circles represent registers that contain 11 bits DWT
coefficient and 1 bit p .

of magnitude bit planes supported by the proposed architecture.
This folded approach reduces the hardware cost of the PEs of
the FAE module in the parallel architecture by 50%.

A. Gobang Register Bank

The DWT coefficients are first stored and shifted in the GRB
module, as shown in Fig. 6. To fit the scan order defined in the
standard, the GRB module shifts and rotates the DWT coeffi-
cients for other modules. The coefficients are first rotated within
each column of the GRB module to match the scan order of one
column in the stripe. When a column in the stripe is coded, i.e.,
every four clock cycles, the coefficients in a column of the GRB
module are shifted to the next column of the GRB module in par-
allel for the coding of next column in the stripe. Intuitively, there

FANG et al.: PARALLEL EMBEDDED BLOCK CODING ARCHITECTURE FOR JPEG 2000 1091

TABLE II
DATAFLOW IN THE GRB MODULE

should be 6 3 registers in the GRB module. But, some modi-
fications are required for the parallel processing. The number of
rows is reduced from 6 to 5 due to the use of vertically causal
mode. The number of columns is increased by one to solve the
problem of significant propagation in parallel processing. The
two 3 3 windows, and , indicate the registers used
in the MPC module and the PC module. Table II shows an ex-
ample of the dataflow in the GRB module. The numbers in the
first row are the cycle counts of the code-block. The rest num-
bers stand for the coefficient positions as defined in Fig. 2. The
number with underline indicates that the coefficient is read from
the line buffer. Taking the 264th clock cycles as an example, the
positions of the coefficients in are 265, 264, 11, 261, 260,
7, 257, 256, and 3, which represent a context window centered
at 260th coefficient.

B. MPC

The MPC module has two main functions. First, it calculates
the according to (1)–(4). Second, it computes the and

defined in (5) and (6). Note that these are the only operations
that involve word-level computations in the word-level EBC al-
gorithm. Thus, all the modules behind the MPC module can
process independently over bit planes. By independently pro-
cessing over bit planes, we can turn off all the PEs of empty bit
planes to reduce the power consumption. This reduces power
consumption dramatically since about half of the bit planes are
empty in most natural images.

Fig. 7 shows the interconnections of the PEs in the MPC
module and the connections of the PEs with registers of GRB
module. The circles represent the registers in GRB module,
which store the DWT coefficients. Note that the figure is up-
side-down from Fig. 3. The output of this module, , is the
coding pass of the MSB of , and it is merged into the data
flow with the coefficients in the GRB module. The circuit of
the PEs in the MPC module is shown in Fig. 8. The variable
is a binary flag indicating whether or not the central coefficient
is the first one of a column in the stripe. If there is at least one
bit plane that the two inputs of the UOR are both “1,” the UOR

outputs “1”; otherwise, it outputs “0.” is the combination
of the eight signals. The PE3 is the realization of a special
case of (4), in which . The module OR outputs “0” if all

Fig. 7. Interconnections between the PEs in the MPC module. The PE3
classifies the coding pass of the MSB of C , p , into one of the three coding
passes, and merges p into the dataflow of the GRB module.

the inputs are zero; otherwise it outputs “1.” Since the coding
pass of the MSB is either Pass 1 or Pass 3, it requires one bit
to represent .

C. Pass Classification (PC)

The PC module determines the coding pass and the
values for the CF module. Since all the bit planes are processed
independently in this module, the following descriptions will be
on a bit plane based scheme. For simplicity, the superscript ,
which denotes the bit plane number, is omitted.

Fig. 9 shows the interconnections among the PEs as well as
their connections with the registers in the GRB module. The de-
tailed circuit of each PE is shown in Fig. 10. The PE4, PE5, and
PE6 calculate the corresponding . The PE7 computes the
and the HVD data for the CF module in the next stage. In addi-
tion, is a binary flag indicating whether the central coefficient
is the first one of a column in a stripe. Note that it is not the same
as the one in MPC module because the context windows locate
on different positions.

The circuit for sign coding is different from that for magni-
tude coding, and Fig. 11 shows the circuit for computing the
of sign coding. The circuit for computing the is exactly the

1092 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 8. Circuit of the PEs in the MPC module. The � and � are passed to next stage. The � of the PE0–PE2 is used by the PE3 to generate the main output,
P , of the MPC module.

Fig. 9. Interconnections between the PEs in the PC module and the
connections with registers in GRB module. This module outputs P and
HVD from the PE7 for the CF module.

same as the one for since the algorithms are the same. The
sign table is simply the mapping of the truth table in Table I.
and are represented by two bits where 01 stands for positive
and 11 stands for negative.

D. CF

The CF module can be divided into two submodules. The first
one is for magnitude bit planes and the second one is for sign
coding. In the following, we describe the two parts separately.

The circuit for magnitude coding of the CF module is shown
in Fig. 12. Since the operations for each bit plane are the same,
only one bit plane of the processing element is shown. The ZC
stands for zero coding and it translates the data into con-
texts by zero coding primitives. The MR stands for magnitude
refinement and it translates the data into contexts by mag-
nitude refinement primitives. The is used as the indication
of whether or not the th bit plane is the first refinement bit
plane of a coefficient. The run-length context is a special con-
text of Pass 3, which is formed in the run-length context (RLC).
If the four contiguous coefficients in the column are all coded
in Pass 3 and the data of these coefficients are zeros,
then the unique run-length context is formed and the CF module
is said to be in the run-length mode. Therefore, the run-length

Fig. 10. Circuit of the PEs in the PC module. The superscript, k, indicating bit
plane number is omitted for simplicity.

Fig. 11. Circuit for computing the H of sign coding. It can be used to
compute V by replacing the corresponding inputs.

mode can only be detected at the last coefficient of a column in
a stripe. Rather than buffering the data by three cycles,
we map the data into corresponding contexts as if there
is no run-length mode. Therefore, the contexts are buffered by

FANG et al.: PARALLEL EMBEDDED BLOCK CODING ARCHITECTURE FOR JPEG 2000 1093

Fig. 12. Circuit for magnitude coding of the CF module. The number of
outputs varies from zero to four, indicated by XD cnt, in accordance with
the results of context mapping.

Fig. 13. Circuit for sign coding of CF module. The delay registers are used to
synchronize with the magnitude coding.

three cycles. This reduces the hardware cost of the buffer by
a factor of 2/3. If the CF module enters the run-length mode,
the RLC is used in place of the contexts initially formed. The

is the binary flag indicating whether the CF module is in
the run-length mode or not. The represents the subband in
which the code-block resides. The is the CXD pair formed
in sign coding. The number of outputs are variable in the CF
module. It outputs one or two CXD pairs in the normal mode
and the number varies from zero to four in the run-length mode.
The indicates the number of CXD pairs generated at the
cycle.

Fig. 13 shows the circuit for sign coding of the CF module. In
order to synchronize the context of sign coding with the context
of magnitude coding, three delay registers are used. The sign
predicting (SP) is a lookup table, which generates the predicted
sign value by and . The decision of sign coding is ob-
tained by performing XOR logic on the predicted sign and the
real sign . The sign coding (SC) module generates the con-
text of the sign coding according the table defined in the stan-
dard.

E. RFIFO

The CF module of the EBC is a variable output rate module.
The number of contexts generated by scanning a sample coeffi-
cient varies from zero to four. On the other hand, the processing
rate of an AE module is at most one input per clock. When it
needs consecutive byteout, the input must be halted. The AE
module will be stalled when there is no context generated. On
the other hand, if the number of context generated is more than
one, all the modules, except AE, will be stalled, and the overall
processing time will be increased.

Fig. 14. Block diagram of the folded AE, where A, C, CT, and B are register
banks for the six coding passes.

Using a FIFO between the CF and the AE modules will alle-
viate this problem. However, the use of a FIFO introduces ad-
ditional latency and occupies more silicon area. The latency is
the clock cycles required for data to go through the FIFO. Both
issues are proportional to the length of the FIFO. According to
the analysis in Section V-A, we proposed a RFIFO architec-
ture. Taking advantages of the features of the EBC algorithm,
the reconfigurable architecture can efficiently reduce the bubble
cycles with minimal FIFO length.

The RFIFO module uses ten FIFOs, in which two of them
contain fifteen registers and the others contain four registers.
The two long FIFOs are used for the third and the fourth nonzero
bit plane of a code-block. The number of nonzero bit planes
of the code-block can be obtained from the DWT. Before pro-
cessing the code-block, the RFIFO module is reconfigured to let
the third and fourth bit plane occupy long FIFOs.

F. FAE

In the proposed FAE architecture, an AE processes six coding
passes from two bit planes in order to reduce the area cost and
increase the hardware utilization. It is natural to process three
coding passes in the same bit plane by the same AE because
any bit of the bit plane belongs to one of the three coding passes.
Thus, only one coding pass has to be handled by the AE at each
cycle. To further reduce the hardware cost, the th and

th bit planes are folded to share the same AE. There are
two reasons to adopt the folded scheme. First, the number of bit
planes is seven or less in most natural images. If one MQ coder
is used for each bit plane, the MQ coder of the highest three bit
planes will be idle in most cases, which is not efficient. Second,
the number of contexts of a bit plane decreases from the MSB bit
plane to the LSB bit plane. Since all the bit planes are processed
simultaneously, the processing time of the parallel architecture
is the time required of the one with the most contexts. It is the
best way to have the working loads equally distribute among the
AE. Therefore, the proposed FAE architecture can achieve this
goal naturally by folding the th bit plane and th bit
plane.

Fig. 14 shows the block diagram of an AE in the FAE ar-
chitecture. The MQ coder implements the arithmetic encoding
operation as defined in the JPEG 2000 standard. The A, C, CT,
and B are state registers of a bit stream, which are also defined
in the standard. The and indicate which coding
pass/bit plane that the input CXD and output bit stream belong
to. The output enable (OE) indicates that the output bit stream
is valid.

1094 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

Fig. 15. Influence of the FIFO length on number of stalled cycles. Gain means the number of stalled cycles decreased by the increase of the FIFO length.

G. Code-Block Parallel Processing

The proposed architecture can extend to processing multiple
code-blocks in parallel by concatenating coefficients of different
code-blocks into one word. The extra hardware cost to support
this functionality is the storage of the and a few control
logic gates. For one more code-blocks, 20 bits registers (1 bit for
each registers in the GRB module) and 64 bits memory (1 bit for
each coefficient of the last row in previous stripe) are required.
The hardware cost of the sign coding and the MPC module is
489 logic gates.

V. EXPERIMENTAL RESULTS

A. FIFO Length

In this section, the optimal configuration of the FIFO is deter-
mined. There are two cases that stalls will happen. The first case
occurs when the number of contexts generated in a bit plane is
larger than the number of sample coefficients. The second case
occurs when the FIFO is full due to the burst generation of con-
texts. The stalled cycles in the first case are inevitable and irrel-
evant to the FIFO length. On the other hand, the stalled cycles in
the second case can be reduced by increasing the FIFO length.

Fig. 15 shows how the FIFO length influences the number
of stalls. The curves named “stall baboon” and “stall lena” are
the average stall cycles for a code-block of baboon and lena im-
ages. Both images are 512 512 and transformed by the 5/3
filter with two levels of decompositions. The tile and code-block
width are 128 and 64, respectively. The number of stalls de-
creases monotonically with the increase of the FIFO length. The
curves named “gain baboon” and “gain lena” are the number
of stalls reduced by increasing the FIFO length. As shown in
Fig. 15, the number of stalls will not decrease when the FIFO
length exceeds the burst length of contexts, which is about 24.
Compromising between speed and cost, fifteen is a good choice
for the FIFO length.

The discussion above can be applied for conventional EBC
architectures, in which only one FIFO is required. For the par-
allel EBC architecture that has multiple FIFOs, the hardware

cost of the FIFOs can be further reduced by exploring the char-
acteristics of the EBC algorithm. As mentioned in Section IV-D,
the source of the variation of context number comes from the
run-length coding in Pass 3. If the run-length mode successes, it
generates few contexts; otherwise, it generates many contexts.
For the first and second bit planes, most sample coefficients
are zero and the run-length coding always successes. Thus, the
run-length coding mostly generate few contexts and, therefore,
the length of FIFO can be short. On the other hand, run-length
coding is seldom in the lower bit planes, so we can use short
FIFO in this case. Therefore, long FIFO is needed only in the
middle bit planes. By using only two long FIFOs for the third
and fourth bit plane, 80% performance is achieved comparing
to using all long FIFOs, while the hardware cost is reduced to
41.3% .

B. FAE Architecture

In the parallel EBC architecture, the maximum bit plane
number is 11, which contains one sign bit plane. Thus, the
maximum number of coding passes is 28 . Thus,
there will be 28 independent embedded bit streams to be coded.
Using the same approach in [9], only an AE is required for one
bit plane since the three coding passes of the same bit plane
are mutually exclusive, i.e., one and only one coding pass will
appear at one cycle. The number of AEs can be further reduced
by exploiting the nature of the DWT and EBC algorithms.
In most natural images, the number of nonzero bit planes
of DWT coefficients are smaller than eight and the average
number is smaller than six. On the other hand, the CF generates
fewer contexts in the first few bit planes from the MSB bit
plane. Therefore, some bit planes can share the same AE to
increase the hardware utilization while maintaining a high
processing rate. Fig. 16 shows the impact of sharing the AE
on the processing rate. The vertical axis is the average cycles
needed for a coefficient. The sharing mechanism of the AEs is
assumed the folded architecture. By this figure, it is significant
that about 1.35 cycles are needed to scan a coefficient even
using one AE for each bit plane. This is because the EBC may

FANG et al.: PARALLEL EMBEDDED BLOCK CODING ARCHITECTURE FOR JPEG 2000 1095

Fig. 16. Average cycles required under different AE numbers. The “cycles” means average cycles spent for a coefficient.

TABLE III
HARDWARE REQUIREMENT OF THE PROPOSED ARCHITECTURE

generate contexts more than the number of sample coefficients.
However, the AE can only process one context in one cycle.
The cost-effective number of the AEs is chosen to be five, and
the hardware cost is reduced to 18% comparing to the direct
implementation. The gate counts saved are 82 317 and the
processing time is increased by 18% comparing to the direct
implementation.

C. Implementation

The parallel architecture is described by the Verilog HDL and
has been logic synthesized. The gate counts and memory re-
quirements are shown in Table III. The size of the code-block
is 64 64 and the maximum coefficient bitwidth is 11 bits. The
memory of the PC module is used to store the coefficient of
the last row in the previous stripe, and the size is 64 12 bits.
The extra bit is used to store the . The memories of both
RFIFO and FAE are synthesized by registers. The overall hard-
ware requirements of the parallel architecture are 91 758 gates
(in two-input NAND gate equivalents) and one 64 12 single
port SRAM. The maximum operating frequency is 100 MHz.

Table IV summaries the run time statistics. In this experi-
ment, three test images are used: lena, jet, and pepper. All the
images are full color (4:4:4) with reversible color transform
(RCT) defined in the standard. The images are all 512 512
with 128 128 tile size and 64 64 code-block size. The 5/3
DWT filter is used with two levels of decompositions. The pro-
cessing rate is defined as total cycles divided by total coeffi-
cients, i.e., for lena in this case. By

TABLE IV
PROCESSING CYCLES AND RATE OF THE PARALLEL ARCHITECTURE

TABLE V
COMPARISON OF THE PARALLEL ARCHITECTURE AND OTHER WORKS

this table, the average processing rate of the proposed architec-
ture is about 1.47, which can support HDTV 720p 4:2:2 at 30
frames/sec at 81 MHz operating frequency.

D. Comparisons

The comparisons of the parallel architecture with other
works are summarized in Table V. Here, speed means the
average number of cycles required to encode a code-block of
size , and the number of magnitude bit planes of the
code-block is . By this table, the parallel architecture is about

times faster than Lian’s [7] or Hsiao’s [8], and is about
times faster than Taubman’s [2]. The processing time of the

parallel architecture is almost independent of the total number
of bit planes of a code-block due to word-level processing of
coefficients.

The second and third columns compare the hardware require-
ments of all the architectures. In this comparison, the memory
indicates the on-chip SRAM requirement. The memory require-
ments of the RFIFO module and the FAE module in Table III are
included in the gate counts since they are implemented by regis-
ters. Although, the logic gate counts of the parallel architecture
are larger than that of others, the on-chip memory requirements
are much smaller. Therefore, the resulting area are similar for all

1096 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005

the architectures. The bandwidth is the total number of memory
access to off-chip memory for a code-block. The bandwidth of
the parallel architecture is of others.

Besides, the parallel architecture requires less power than
others in two aspects. First, it can achieve the same specifi-
cations as others while the operating frequency is of
others. Typically, is six and the operating frequency of the
proposed architecture is 0.21 of others under the same specifi-
cation. Second, the power consumed by the off-chip memory
access of the proposed architecture is also much less than the
others. Assuming that the power consumption is proportional
to the access times, the off-chip memory access power of the
proposed architecture is of others. The power consump-
tion of memory access of others can be reduced by placing a
code-block memory into the chip for parallel to serial conver-
sion. However, the memory requirement will be increased by
44 Kb , which almost doubles the area.

VI. CONCLUSIONS

This paper presents a high performance, memory-efficient
parallel architecture for the EBC in JPEG 2000. The architecture
is based on the proposed word-level EBC algorithm, in which all
the state variable memories can be eliminated. By analyzing the
relationship of the distribution of contexts versus bit planes, we
proposed a RFIFO architecture, which can reduce the area of the
FIFO to 41.3%. An FAE architecture is proposed to reduce the
area of the parallel architecture. The parallel architecture pro-
cesses 54 Msamples/sec at 81 MHz regardless of the coefficient
bitwidth. It can losslessly encode HDTV 720p (1280 720,
4:2:2) resolution pictures at 30 frames/s in real time. The pro-
cessing rate of the parallel architecture is about six times faster
than that of other architectures. The bandwidth is only 16.7%
of others. In a word, the parallel architecture achieves six times
speed-up and 83.3% bandwidth saving with similar hardware
cost comparing to other architectures.

REFERENCES

[1] JPEG 2000 Part I: Final Draft International Standard (ISO/IEC
FDIS15444-1), ISO/IEC JTC1/SC29/WG1 N1855, Aug. 2000.

[2] JPEG 2000 Verification Model 7.0 (Technical Description), ISO/IEC
JTC1/SC29/WG1 N1684, 2000.

[3] JPEG 2000 Requirements and Profiles, ISO/IEC JTC1/SC29/WG1
N1271, 1999.

[4] D. Taubman and M. Marchellin, JPEG2000: Image Compression Fun-
damentals, Standards and Practice. Norwell, MA: Kluwer, 2002.

[5] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 Still
Image Compression Standard,” IEEE Signal Process. Mag., vol. 18, no.
5, pp. 36–58, Sep. 2001.

[6] EBCOT: Embedded Block Coding With Optimized Truncation, ISO/IEC
JTC1/SC29/WG1 N1020R, 1999.

[7] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Analysis and Ar-
chitecture Design of Block-Coding Engine for EBCOT in JPEG 2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 219–230,
Mar. 2003.

[8] Y.-T. Hsiao, H.-D. Lin, and C.-W. Jen, “High-speed memory saving ar-
chitecture for the embedded block coding in JPEG 2000,” in Proc. IEEE
Int. Symp. Circuits and Systems, vol. 5, Scottsdale, AZ, May 2002, pp.
133–136.

[9] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel for
EBCOT in JPEG 2000,” in Proc. IEEE Int. Symp. Circuits and Systems,
vol. 1, Scottsdale, AZ, May 2002, pp. 773–776.

[10] K. Andra, C. Chakrabarti, and T. Acharya, “A high-performance JPEG
2000 architecture,” IEEE Trans. Circuits Syst. Video Technol., vol. 13,
no. 3, pp. 209–218, Mar. 2003.

[11] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still
image coding system: An overview,” IEEE Trans. Consumer Electron.,
vol. 46, no. 4, pp. 1103–1127, Nov. 2000.

[12] D. Taubman, E. Ordentlich, M. Weinberger, and G. Serourssi, “Em-
bedded block coding in JPEG 2000,” in Proc. IEEE Int. Conf. Image
Processing, vol. 2, Vancouver, Canada, Sep. 2000, pp. 33–36.

[13] M. Irwin and V. Narayanan, “Energy issues in multimedia systems,” in
Proc. IEEE Workshop on Signal Processing Systems, Taipei, Taiwan,
Oct. 1999, pp. 24–33.

[14] H.-C. Fang, T.-C. Wang, and L.-G. Chen, “Novel word-level algorithm
of embedded block coding in JPEG 2000,” in Proc. IEEE Int. Conf. Mul-
timedia Expo., vol. 1, Baltimore, MD, Jul. 2003, pp. 137–140.

[15] D. Taubman, “High Performance Scalable Image Compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[16] J.-L. Mitchell and W.-B. Pennebaker, “Software implementation of the
Q-coder,” IBM J. Res. Develop., vol. 32, no. 6, pp. 753–774, Nov. 1988.

[17] F. Ono, S. Kino, M. Yoshida, and T. Kimura, “Bi-level image coding with
MELCODE-comparison of block type code and arithmetic type code,”
in Proc. IEEE Global Telecommunications Conf., 1989, pp. 255–260.

[18] W. Pennebaker and J. Mitchell, JPEG: Still Image Data Compression
Standard. New York: Van Nostrand Reinhold, 1992.

Hung-Chi Fang was born in I-Lan, Taiwan, R.O.C.,
in 1979. He received the B.S. degree in electrical
engineering and the Ph.D. degree from the Graduate
Institute of Electronics Engineering both from
National Taiwan University, Taiwan, R.O.C., in 2001
and 2005, respectively.

His research interests include algorithm and
architecture for image/video processing, JPEG 2000
coding systems, and associated VLSI designs.

Yu-Wei Chang was born in Taipei, Taiwan, R.O.C.,
in 1980. He received the B.S. degree in electrical en-
gineering from National Taiwan University, Taipei,
Taiwan, R.O.C, in 2003, where he is currently
working toward the Ph.D. degree in the Graduate
Institute of Electronics Engineering.

His research interests include algorithm and ar-
chitecture for image/video signal processing, image
coding system: JPEG 2000, JBIG2, and related VLSI
designs.

Tu-Chih Wang was born in Taipei, Taiwan, R.O.C.,
in 1975. He received the B.S., M.S., and Ph.D.
degrees in electrical engineering from the National
Taiwan University, Taiwan, R.O.C., in 1997, 1999,
and 2003, respectively.

His main research interests include video coding
technology, DSP architecture, and media processor
architecture.

FANG et al.: PARALLEL EMBEDDED BLOCK CODING ARCHITECTURE FOR JPEG 2000 1097

Chung-Jr Lian (S’00–M’04) received the B.S., M.S.
and Ph.D. degrees in electrical engineering from Na-
tional Taiwan University, Taipei, Taiwan, R.O.C. in
1997, 1999, and 2003, respectively.

He is currently a Postdoctoral Research Fellow
in Graduate Institute of Electronics Engineering,
National Taiwan University. His major research
interests include VLSI architecture design, video,
and image coding.

Liang-Gee Chen (S’84–M’86–SM’94–F’01) re-
ceived the B.S., M.S., and Ph.D. degrees in electrical
engineering from National Cheng Kung University,
Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986,
respectively.

In 1988, he joined the Department of Electrical
Engineering, National Taiwan University, Taipei,
Taiwan, R.O.C. During 1993–1994, he was a Visiting
Consultant in the DSP Research Department, AT&T
Bell Laboratories, Murray Hill, NJ. In 1997, he was
a Visiting Scholar in the Department of Electrical

Engineering, University of Washington, Seattle. Currently, he is a Professor at
National Taiwan University. His current research interests are DSP architecture
design, video processor design, and video coding systems.

Dr. Chen has served as an Associate Editor of IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate
Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 1999, and as
Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:
EXPRESS BRIEFS since 2000. He has been the Associate Editor of the Journal of
Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the
Journal of Video Signal Processing Systems. He is also the Associate Editor of
the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th VLSI
Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal
Processing Systems: Design and Implementation. He is the Past-Chair of
Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a Member
of the IEEE CAS Technical Committee of VLSI Systems and Applications,
the Technical Committee of Visual Signal Processing and Communications,
and the IEEE Signal Processing Technical Committee of Design and Imple-
mentation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical
Committee on Multimedia Systems and Applications. During 2001–2002, he
served as a Distinguished Lecturer of the IEEE CAS Society. He received Best
Paper Awards from the R.O.C. Computer Society in 1990 and 1994. Annually
from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he
received the Best Paper Award of the 1992 Asia-Pacific Conference on Circuits
and Systems in the VLSI design track. In 1993, he received the Annual Paper
Award of the Chinese Engineers Society. In 1996 and 2000, he received the
Outstanding Research Award from the National Science Council, and in 2000,
the Dragon Excellence Award from Acer. He is a Member of Phi Tau Phi.

	toc
	Parallel Embedded Block Coding Architecture for JPEG 2000
	Hung-Chi Fang, Yu-Wei Chang, Tu-Chih Wang, Chung-Jr Lian, and Li
	I. I NTRODUCTION
	II. P RELIMINARY
	A. EBC Algorithm

	Fig.€1. Diagram of the EBCOT algorithm. It is a two-tiered algor
	Fig.€2. Diagram of code-block and stripes. A 64 $\,\times\,$ 64
	1) CF: The basic coding unit of the EBC is a code-block with typ

	Fig.€3. Context window for CF. The sample coefficient to be code
	2) Arithmetic Encoder: The AE is an adaptive, multiplication fre
	B. Previous EBC Architectures

	Fig.€4. Comparisons of rate-distortion curves of various images
	III. P ARALLEL EBC A LGORITHM
	A. Coding Pass Classification
	B. CF

	TABLE I T RUTH T ABLE OF $H^{\chi}(V^{\chi})$ FOR S IGN C ODING
	1) Magnitude Coding: Let $\sigma ^{k}_{s}$ denotes the contribut
	2) Sign Coding: Let $\chi _{s}$ denotes the sign of s, where 1

	Fig.€5. Block diagram of the proposed architecture. Only the MPC
	C. Arithmetic Encoder
	IV. P ARALLEL EBC A RCHITECTURE

	Fig.€6. GRB. The circles represent registers that contain 11 bit
	A. Gobang Register Bank

	TABLE II D ATAFLOW IN THE GRB M ODULE
	B. MPC

	Fig.€7. Interconnections between the PEs in the MPC module. The
	C. Pass Classification (PC)

	Fig. 8. Circuit of the PEs in the MPC module. The $\kappa _{s}$
	Fig.€9. Interconnections between the PEs in the PC module and th
	D. CF

	Fig.€10. Circuit of the PEs in the PC module. The superscript, $
	Fig. 11. Circuit for computing the H^{χ} of sign coding. It
	Fig.€12. Circuit for magnitude coding of the CF module. The numb
	Fig.€13. Circuit for sign coding of CF module. The delay registe
	E. RFIFO

	Fig.€14. Block diagram of the folded AE, where A, C, CT, and B a
	F. FAE

	Fig.€15. Influence of the FIFO length on number of stalled cycle
	G. Code-Block Parallel Processing
	V. E XPERIMENTAL R ESULTS
	A. FIFO Length
	B. FAE Architecture

	Fig.€16. Average cycles required under different AE numbers. The
	TABLE III H ARDWARE R EQUIREMENT OF THE P ROPOSED A RCHITECTURE
	C. Implementation

	TABLE IV P ROCESSING C YCLES AND R ATE OF THE P ARALLEL A RCHITE
	TABLE V C OMPARISON OF THE P ARALLEL A RCHITECTURE AND O THER W
	D. Comparisons
	VI. C ONCLUSIONS

	JPEG 2000 Part I: Final Draft International Standard (ISO/IEC FD
	JPEG 2000 Verification Model 7.0 (Technical Description), ISO/IE
	JPEG 2000 Requirements and Profiles, ISO/IEC JTC1/SC29/WG1 N1271
	D. Taubman and M. Marchellin, JPEG2000: Image Compression Fundam
	A. Skodras, C. Christopoulos, and T. Ebrahimi, The JPEG 2000 Sti

	EBCOT: Embedded Block Coding With Optimized Truncation, ISO/IEC
	C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, Analysis and
	Y.-T. Hsiao, H.-D. Lin, and C.-W. Jen, High-speed memory saving
	J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, Efficient pass-paralle
	K. Andra, C. Chakrabarti, and T. Acharya, A high-performance JPE
	C. Christopoulos, A. Skodras, and T. Ebrahimi, The JPEG2000 stil
	D. Taubman, E. Ordentlich, M. Weinberger, and G. Serourssi, Embe
	M. Irwin and V. Narayanan, Energy issues in multimedia systems,
	H.-C. Fang, T.-C. Wang, and L.-G. Chen, Novel word-level algorit
	D. Taubman, High Performance Scalable Image Compression with EBC
	J.-L. Mitchell and W.-B. Pennebaker, Software implementation of
	F. Ono, S. Kino, M. Yoshida, and T. Kimura, Bi-level image codin
	W. Pennebaker and J. Mitchell, JPEG: Still Image Data Compressio

